310 research outputs found

    Formulation of Deep Reinforcement Learning Architecture Toward Autonomous Driving for On-Ramp Merge

    Full text link
    Multiple automakers have in development or in production automated driving systems (ADS) that offer freeway-pilot functions. This type of ADS is typically limited to restricted-access freeways only, that is, the transition from manual to automated modes takes place only after the ramp merging process is completed manually. One major challenge to extend the automation to ramp merging is that the automated vehicle needs to incorporate and optimize long-term objectives (e.g. successful and smooth merge) when near-term actions must be safely executed. Moreover, the merging process involves interactions with other vehicles whose behaviors are sometimes hard to predict but may influence the merging vehicle optimal actions. To tackle such a complicated control problem, we propose to apply Deep Reinforcement Learning (DRL) techniques for finding an optimal driving policy by maximizing the long-term reward in an interactive environment. Specifically, we apply a Long Short-Term Memory (LSTM) architecture to model the interactive environment, from which an internal state containing historical driving information is conveyed to a Deep Q-Network (DQN). The DQN is used to approximate the Q-function, which takes the internal state as input and generates Q-values as output for action selection. With this DRL architecture, the historical impact of interactive environment on the long-term reward can be captured and taken into account for deciding the optimal control policy. The proposed architecture has the potential to be extended and applied to other autonomous driving scenarios such as driving through a complex intersection or changing lanes under varying traffic flow conditions.Comment: IEEE International Conference on Intelligent Transportation Systems, Yokohama, Japan, 201

    Autonomous Ramp Merge Maneuver Based on Reinforcement Learning with Continuous Action Space

    Full text link
    Ramp merging is a critical maneuver for road safety and traffic efficiency. Most of the current automated driving systems developed by multiple automobile manufacturers and suppliers are typically limited to restricted access freeways only. Extending the automated mode to ramp merging zones presents substantial challenges. One is that the automated vehicle needs to incorporate a future objective (e.g. a successful and smooth merge) and optimize a long-term reward that is impacted by subsequent actions when executing the current action. Furthermore, the merging process involves interaction between the merging vehicle and its surrounding vehicles whose behavior may be cooperative or adversarial, leading to distinct merging countermeasures that are crucial to successfully complete the merge. In place of the conventional rule-based approaches, we propose to apply reinforcement learning algorithm on the automated vehicle agent to find an optimal driving policy by maximizing the long-term reward in an interactive driving environment. Most importantly, in contrast to most reinforcement learning applications in which the action space is resolved as discrete, our approach treats the action space as well as the state space as continuous without incurring additional computational costs. Our unique contribution is the design of the Q-function approximation whose format is structured as a quadratic function, by which simple but effective neural networks are used to estimate its coefficients. The results obtained through the implementation of our training platform demonstrate that the vehicle agent is able to learn a safe, smooth and timely merging policy, indicating the effectiveness and practicality of our approach

    A Reinforcement Learning Approach for Intelligent Traffic Signal Control at Urban Intersections

    Full text link
    Ineffective and inflexible traffic signal control at urban intersections can often lead to bottlenecks in traffic flows and cause congestion, delay, and environmental problems. How to manage traffic smartly by intelligent signal control is a significant challenge in urban traffic management. With recent advances in machine learning, especially reinforcement learning (RL), traffic signal control using advanced machine learning techniques represents a promising solution to tackle this problem. In this paper, we propose a RL approach for traffic signal control at urban intersections. Specifically, we use neural networks as Q-function approximator (a.k.a. Q-network) to deal with the complex traffic signal control problem where the state space is large and the action space can be discrete. The state space is defined based on real-time traffic information, i.e. vehicle position, direction and speed. The action space includes various traffic signal phases which are critical in generating a reasonable and realistic control mechanism, given the prominent spatial-temporal characteristics of urban traffic. In the simulation experiment, we use SUMO, an open source traffic simulator, to construct realistic urban intersection settings. Moreover, we use different traffic patterns, such as major/minor road traffic, through/left-turn lane traffic, tidal traffic, and varying demand traffic, to train a generalized traffic signal control model that can be adapted to various traffic conditions. The simulation results demonstrate the convergence and generalization performance of our RL approach as well as its significant benefits in terms of queue length and wait time over several benchmarking methods in traffic signal control

    Behavior Planning of Autonomous Cars with Social Perception

    Full text link
    Autonomous cars have to navigate in dynamic environment which can be full of uncertainties. The uncertainties can come either from sensor limitations such as occlusions and limited sensor range, or from probabilistic prediction of other road participants, or from unknown social behavior in a new area. To safely and efficiently drive in the presence of these uncertainties, the decision-making and planning modules of autonomous cars should intelligently utilize all available information and appropriately tackle the uncertainties so that proper driving strategies can be generated. In this paper, we propose a social perception scheme which treats all road participants as distributed sensors in a sensor network. By observing the individual behaviors as well as the group behaviors, uncertainties of the three types can be updated uniformly in a belief space. The updated beliefs from the social perception are then explicitly incorporated into a probabilistic planning framework based on Model Predictive Control (MPC). The cost function of the MPC is learned via inverse reinforcement learning (IRL). Such an integrated probabilistic planning module with socially enhanced perception enables the autonomous vehicles to generate behaviors which are defensive but not overly conservative, and socially compatible. The effectiveness of the proposed framework is verified in simulation on an representative scenario with sensor occlusions.Comment: To be appear on the 2019 IEEE Intelligent Vehicles Symposium (IV2019

    Driving Decision and Control for Autonomous Lane Change based on Deep Reinforcement Learning

    Full text link
    We apply Deep Q-network (DQN) with the consideration of safety during the task for deciding whether to conduct the maneuver. Furthermore, we design two similar Deep Q learning frameworks with quadratic approximator for deciding how to select a comfortable gap and just follow the preceding vehicle. Finally, a polynomial lane change trajectory is generated and Pure Pursuit Control is implemented for path tracking. We demonstrate the effectiveness of this framework in simulation, from both the decision-making and control layers. The proposed architecture also has the potential to be extended to other autonomous driving scenarios.Comment: This Paper has been submitted to ITSC 201

    Quadratic Q-network for Learning Continuous Control for Autonomous Vehicles

    Full text link
    Reinforcement Learning algorithms have recently been proposed to learn time-sequential control policies in the field of autonomous driving. Direct applications of Reinforcement Learning algorithms with discrete action space will yield unsatisfactory results at the operational level of driving where continuous control actions are actually required. In addition, the design of neural networks often fails to incorporate the domain knowledge of the targeting problem such as the classical control theories in our case. In this paper, we propose a hybrid model by combining Q-learning and classic PID (Proportion Integration Differentiation) controller for handling continuous vehicle control problems under dynamic driving environment. Particularly, instead of using a big neural network as Q-function approximation, we design a Quadratic Q-function over actions with multiple simple neural networks for finding optimal values within a continuous space. We also build an action network based on the domain knowledge of the control mechanism of a PID controller to guide the agent to explore optimal actions more efficiently.We test our proposed approach in simulation under two common but challenging driving situations, the lane change scenario and ramp merge scenario. Results show that the autonomous vehicle agent can successfully learn a smooth and efficient driving behavior in both situations.Comment: Machine Learning for Autonomous Driving Workshop on NeurIPS, 201

    Automated Driving Maneuvers under Interactive Environment based on Deep Reinforcement Learning

    Full text link
    Safe and efficient autonomous driving maneuvers in an interactive and complex environment can be considerably challenging due to the unpredictable actions of other surrounding agents that may be cooperative or adversarial in their interactions with the ego vehicle. One of the state-of-the-art approaches is to apply Reinforcement Learning (RL) to learn a time-sequential driving policy, to execute proper control strategy or tracking trajectory in dynamic situations. However, direct application of RL algorithms is not satisfactorily enough to deal with the cases in the autonomous driving domain, mainly due to the complex driving environment and continuous action space. In this paper, we adopt Q-learning as our basic learning framework and design a unique format of the Q-function approximator that consists of neural networks to handle the continuous action space challenge. The learning model is present in a closed form of continuous control variables and trained in a simulation platform that we have developed with embedded properties of real-time vehicle interactions. The proposed algorithm avoids invoking an additional actor network that learns to take actions, as in actor-critic algorithms. At the same time, some prior knowledge of vehicle dynamics is also fed into the model to assist learning. We test our algorithm with a challenging use case - lane change maneuver, to verify the practicability and feasibility of the proposed approach. Results from accumulated rewards and vehicle performance show that RL vehicle agents successfully learn a safe, comfort and efficient driving policy as defined in the reward function

    Continuous Control for Automated Lane Change Behavior Based on Deep Deterministic Policy Gradient Algorithm

    Full text link
    Lane change is a challenging task which requires delicate actions to ensure safety and comfort. Some recent studies have attempted to solve the lane-change control problem with Reinforcement Learning (RL), yet the action is confined to discrete action space. To overcome this limitation, we formulate the lane change behavior with continuous action in a model-free dynamic driving environment based on Deep Deterministic Policy Gradient (DDPG). The reward function, which is critical for learning the optimal policy, is defined by control values, position deviation status, and maneuvering time to provide the RL agent informative signals. The RL agent is trained from scratch without resorting to any prior knowledge of the environment and vehicle dynamics since they are not easy to obtain. Seven models under different hyperparameter settings are compared. A video showing the learning progress of the driving behavior is available. It demonstrates the RL vehicle agent initially runs out of road boundary frequently, but eventually has managed to smoothly and stably change to the target lane with a success rate of 100% under diverse driving situations in simulation.Comment: Published at the 30th IEEE Intelligent Vehicles Symposium (IV), 201

    Meta-Adversarial Inverse Reinforcement Learning for Decision-making Tasks

    Full text link
    Learning from demonstrations has made great progress over the past few years. However, it is generally data hungry and task specific. In other words, it requires a large amount of data to train a decent model on a particular task, and the model often fails to generalize to new tasks that have a different distribution. In practice, demonstrations from new tasks will be continuously observed and the data might be unlabeled or only partially labeled. Therefore, it is desirable for the trained model to adapt to new tasks that have limited data samples available. In this work, we build an adaptable imitation learning model based on the integration of Meta-learning and Adversarial Inverse Reinforcement Learning (Meta-AIRL). We exploit the adversarial learning and inverse reinforcement learning mechanisms to learn policies and reward functions simultaneously from available training tasks and then adapt them to new tasks with the meta-learning framework. Simulation results show that the adapted policy trained with Meta-AIRL can effectively learn from limited number of demonstrations, and quickly reach the performance comparable to that of the experts on unseen tasks.Comment: 2021 International Conference on Robotics and Automation (ICRA 2021

    A Data Driven Method of Optimizing Feedforward Compensator for Autonomous Vehicle

    Full text link
    A reliable controller is critical and essential for the execution of safe and smooth maneuvers of an autonomous vehicle.The controller must be robust to external disturbances, such as road surface, weather, and wind conditions, and so on.It also needs to deal with the internal parametric variations of vehicle sub-systems, including power-train efficiency, measurement errors, time delay,so on.Moreover, as in most production vehicles, the low-control commands for the engine, brake, and steering systems are delivered through separate electronic control units.These aforementioned factors introduce opaque and ineffectiveness issues in controller performance.In this paper, we design a feed-forward compensate process via a data-driven method to model and further optimize the controller performance.We apply the principal component analysis to the extraction of most influential features.Subsequently,we adopt a time delay neural network and include the accuracy of the predicted error in a future time horizon.Utilizing the predicted error,we then design a feed-forward compensate process to improve the control performance.Finally,we demonstrate the effectiveness of the proposed feed-forward compensate process in simulation scenarios.Comment: This paper have been submitted to the 2019 IEEE Intelligent Vehicle Symposiu
    • …
    corecore